
Wait-free Hash Maps in the

Entity-Component-System Pattern

for Realtime Interactive Systems

Patrick Lange, Rene Weller, Gabriel Zachmann

University of Bremen, Germany

cgvr.cs.uni-bremen.de

9th SEARIS Workshop at IEEE VR

19-23 March 2016, Greenville, SC

Data: Central Part in RIS Development

ÁGeneration, management and distribution of the global simulation or

world state for all software components and/or users

ÁUsually many independent inhomogeneous software components

need to communicate and exchange data in order to generate this

global state

System

Motivation Related Work Our Approach Results Conclusion

Requirements in RIS Development

ÁReusability

Á(Realtime) performance

ÁScalability

System A

System

System

System B

Motivation Related Work Our Approach Results Conclusion

Entity-Component-System (ECS) Pattern

ÁMajor design pattern used in modern architectures for Realtime

Interactive Systems

ÁStrives for high reusability and architectural scalability

ÁNovel architectural software concepts

ÁPerformance and scalability for massively parallel access?

V

V
Motivation Related Work Our Approach Results Conclusion

V

[Wiebuschô15]

Entity-Component-System (ECS) Pattern

ÁIntroduces three software architecture concepts

ÁEntity: General purpose object, defined as unique id

ÁComponent: Raw data for one aspect of a general purpose object

ÁSystem: Runs continuously and applies global actions on Entities

ÁDecouples high-level modules such as physics, rendering or simulation from

low-level objects

Motivation Related Work Our Approach Results Conclusion

ECS: Game-based Example

Position Velocity Range Health

Physics Input

Systems

Components

Base Enemy Tower

Entities

Motivation Related Work Our Approach Results Conclusion

ECS: Game-based Example

Position Velocity Range Health

Physics Input

Systems

Components

Base Enemy Tower

Entities

Motivation Related Work Our Approach Results Conclusion

ECS: Game-based Example

Position Velocity Range Health

Physics Input

Systems

Components

Base Enemy Tower

Entities

Motivation Related Work Our Approach Results Conclusion

ECS: Game-based Example

Position Velocity Range Health

Physics Input

Systems

Components

Base Enemy Tower

Entities

Motivation Related Work Our Approach Results Conclusion

ECS: Shared Data Structures

ÁCurrent RIS applications inherit many Entities, Components and

Systems

ÁParallelization of System access necessary in order to preserve

realtime performance constraints

ÁThe container of Components becomes a shared data structure

ÁECS does not give guidelines or specification how to solve this

problem

V V

Motivation Related Work Our Approach Results Conclusion

V

Concurrency Control for RIS

ÁProcess of managing simultaneous execution of software

components on shared global word/simulation state

ÁRIS reserach concerns low-level concepts and high-level

concepts for parallelism[Latoschikó11,Rehfeldô13,Knotó14]

ÁHigh-performance architectures for e.g. sophisticated (3D)

simulations (C/C++, CUDA, OpenMP, OpenGL..)

Responsiveness

ConsistencyScalability

Motivation Related Work Our Approach Results Conclusion

Wait-free Hash Maps

ÁGuarantee access to a shared

data structure in a finite number

of steps (e.g. as traditional

thread or OpenMP

implementation)

ÁDoes not need any traditional

locking mechanism

ÁDeliver high performance even

for massive concurrent access

Motivation Related Work Our Approach Results Conclusion

Responsiveness

ConsistencyScalability

Wait-free Hash Maps: Basic Idea

ÁAssignment of unique identifiers

to each data packet which is

exchanged between software

components

ÁEvery data packet is stored

inside a hash map which

resembles the complete system

state

ÁDe-coupling and parallelization

of read, write and data deletion

processes via atomic operations

and memory cloning[Langeó14,

Langeó15]

Motivation Related Work Our Approach Results Conclusion

[Adapted fromLangeô15]

Wait-free Hash Maps: Applications

ÁMassive concurrent access (> 50 threads) per simulation/system

frame

ÁMulti-agent system based simulation, simulation-based optimization

Motivation Related Work Our Approach Results Conclusion

Frame 1

Frame 2

SYNC

System #1 System #né

Components in Hash Map

System #1 System #né

Components in Hash Map

Integration of Wait-free Hash Maps

Motivation Related Work Our Approach Results Conclusion

Integration of Wait-free Hash Maps

ÁAll Components reside in our wait-free hash map

Motivation Related Work Our Approach Results Conclusion

Integration of Wait-free Hash Maps

ÁAll Components reside in our wait-free hash map

ÁComponents (also collections) are accessible via unique keys

Motivation Related Work Our Approach Results Conclusion

Integration of Wait-free Hash Maps

ÁAll Components reside in our wait-free hash map

ÁComponents are accessible via unique keys

ÁEntity composition as list of Component keys

Motivation Related Work Our Approach Results Conclusion

Wait-free Hash Maps: Double Buffering

ÁProducer and consumer version of data within hash map

ÁAtomic reference counter guards consumer versions

ÁEvery write access to the hash map generates a clone of the

manipulated data

Motivation Related Work Our Approach Results Conclusion

System A
Producer

Consumer

Hash map bucket

H
A

S
H

Wait-free Hash Maps: Double Buffering

ÁProducer and consumer version of data within hash map

ÁAtomic reference counter guards consumer versions

ÁEvery write access to the hash map generates a clone of the

manipulated data

Motivation Related Work Our Approach Results Conclusion

System A
Producer

Consumer

GET(KEY)

Wait-free Hash Maps: Double Buffering

ÁProducer and consumer version of data within hash map

ÁAtomic reference counter guards consumer versions

ÁEvery write access to the hash map generates a clone of the

manipulated data

Motivation Related Work Our Approach Results Conclusion

System A
Producer

Consumer
Consumer

Consumer
Consumer

Consumer

WRITE(KEY)

Wait-free Hash Maps: Double Buffering

ÁProducer and consumer version of data within hash map

ÁAtomic reference counter guards consumer versions

ÁEvery write access to the hash map generates a clone of the

manipulated data

ÁParallel read access can return, in accordance to RIS setup, any

old state

Motivation Related Work Our Approach Results Conclusion

System A
Producer

Consumer
Consumer

Consumer
Consumer

Consumer

WRITE(KEY)

System B

READ(KEY)

Integration of Wait-free Hash Maps

Motivation Related Work Our Approach Results Conclusion

