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@ Multiobjective Optimization

Simulation-based optimization

Multidisciplinary design attempts to satisfy multiple, possibly
conflicting, objectives at once
O 00l ETe) "A)FA)MB Ry
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Blackbox simulations: "Qnot known

No partial derivatives, no constraints, no relationships...

‘>\D‘Ominated solutions
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W Motivation: Blackbox Simulations

Engineers can not describe the relationships which are used to
formulate a mathematical problem (e.g. differential equations)

Finding a tradeoff set of input parameters which satisfy all
simulation goals

Simulationgoals [(0 0 01 EW® "A)FA)HB Fi‘Q((b)w .
N
Whw Satisfaction of
goal states

Parameters "0t £ £ 0 &

Application in simulation-based feasibility studies

Our use case scenario: Autonomous spacecraft operations for small
planetary objects

Motivation Related Work Our Approach Evaluation Conclusion
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Y Motivation: Autonomous Spaceflight Example
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Propulsion type + Orbit transfer+ Planetary visibility + Self-localization
t Ground station communication+ Bandwidth + Antenna diameter

Visualization Modes lnterplanetlry Mission Phase . \ Spacecraft Details

World Mode Ground-truth Data
o _ Position[Au] 1.22 0.00 2.52
Velacitylkmy/s): -16.02 0.00 7.76
= Angular velocityfrad/s]: 0.00 0.00 0.00
Guidance Mode Acceleration[m/s2] 0.00 0.00 0.00
Angular acceleration[rad/s2}: 0:00_0.00 0.00
Current massfkg): Se+03

Fusion Mode

Autoniomy Mode

Spacecraft Data
Subsystems Mode :
\ % -~ - L Position[Au]: 1.26 0,00 2.5
PTCM  Estimation . . Yenus ' Velocity[kmys]: ™. 15.92 0.01 7.99
PTCM Angular velocity{rad/s): 0.00 0.00 0.00
| \ Acceleration[m/s2): 0.00 0.00 0.00
Earth N . ; / Angular acceleration[tad/s2]: 0.00 0.00 0.00
Current mass{kg}k: A Se+03

MeArcury

l'_ ” Time Details

Ceres: To! he surveyed

Julisn simulation time: 2.46281e+06
Gregorian simulation time: 3-11-2030
Gregorian simulation time step [ms]: 8.64e+07
Real time: / 17-6-2015
Simulation time 16 real time: 439845
Simulation logps: 305
Avg simulation loop’ total [s): 0.196433
Avg werld simulation loop [s]: 0.087
Avg render update loop [s] 0.002
~ Avg spacecraft loop [s) 0.107433
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Y The Knowledge Discovery Process

Main idea: Use simulation itself to generate data in order to
simulate, optimize or analyze the given model

Making sense of huge data collections
Semi-automatic five step process
Requires several iterations of some steps

Collection of data mining techniques

Interpretation

Data Mining“ /
H

Transformation / D
Preprocessing - Patterns
Selection L

‘-- J ‘ — Transfo, | ed

j F Preprocessed Dat
e Data

Database Target Data
Motivation Related Work Our Approach Evaluation

Knowledge
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Y KD Processes in Simulations

Single objective optimization

Landscape characterization problem exploration via support vector machines
[Burl06]

Determination of adaptation strategies for linear relationships [Lattner11]
Linear regression of input parameters and classification [Painter‘06]
Multi objective optimization

Analysis of existing Pareto solutions
[Bandaru‘10,Sugimura‘07,Liebscher‘09,Dudas‘15]

Motivation Related Work Our Approach Evaluation Conclusion
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@ Remaining Challenges

1. Multiobjective optimization

Approximation of the feasible design space

2. Blackbox simulation

Determination of relationships between input parameters and

simulation goals

Do1

0.008

Dominated solutions
0.006 | ‘
0.004 |- Pareto Optimal
solutions

Objective 2
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Features

1. Reduce amount of simulation data farming

2. Completely autonomous knowledge discovery process

Remove manual assessment of knowledge discovery results

Interpretation 4%

Data Mining ﬂ _
|

Transformation / D
Preprocessing / Patterns
Selection _
‘/ Transfol ed
T ]‘ Preprocessed Dat
Data
Database Ta rget Data

Motivation Related Work Our Approach Evaluation
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Our Approach

Completely autonomous knowledge discovery process

Uncovers hidden relationships between simulation input parameters
and simulation goals with few samples from the simulation

Approximates feasible design space

Approximates Pareto gradient information for multiobjective algorithms

Simulation
parameters  Relationship __ Design Space
Goals Analysis Approximation

| 1

Pareto Gradient
Approximation

Optimization algorithms
Simulation

Motivation Related Work Our Approach Evaluation Conclusion
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U Goal

Approximate objective function ‘Qand determine their input
W8 Foo o
QB hw)©° O
Complexity of simulation data farming
Brute-force approach is too computationally expensive
v N\ v a DI Qa6 0 8 Q&
6(n n)ta 5 L OO EREEE
n DTQe nrpwi wa Qo QI |
Our two phase approach reduces the farming operations

Forest-based association rule analysis determines ((QFB hoo )

Spline-based sampling approximates Q

Motivation Related Work Our Approach Evaluation Conclusion
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W Association Rule Mining

Requires centralized data management which records
transactions of all software modules (e.g. GraphPool)

Outputs list of association rules
T AGEBA & O & WM OOPD
Association rule implies workflow from Wto W

Example: - | A Q0 A\l B Od&@HI-TA OO

Simulation _ _
dataflow & Slmulatlo_n
workflow Transactions Rules et
— Data - I ARM |
Management -> Analy3|s
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Y Forest-Based Association Rule Analysis

Represent list of association rules in a tree data structures
(association rule tree)

One association rule tree for every goal

Association rules Forest representation
Goal 1 Goal 2

K Gl - (5,
] 0
ﬁ@%ﬁ SO Oe
A Q %
ENONONONO
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Y Forest-Based Association Rule Analysis

Determination of correlation between input parameter and
simulation goal

Prune sub-tree if no correlation can be found

Approximate the relationship with splines

Forest representation
Goal 1 Goal 2

Motivation Related Work Our Approach Evaluation Conclusion
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W Spline-based Sampling 4
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Relationship defines three-dimensional space
1. Approximate behavior per time frame with one spline

2. Analyze spline for correlation

Goal satisfaction

" Spline at O

Simulation time Spline at O

Parameter value

Motivation Related Work Our Approach Evaluation Conclusion
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W Spline-based Sampling 4
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Draw samples which minize euclidean distance between
samples in parameter space

Stop if spline predicts next € satisfaction states correctly

Goal satisfaction

]
Parameter value

Motivation Related Work Our Approach Evaluation Conclusion
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W Spline-based Sampling 4
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Draw samples which minize euclidean distance between
samples in parameter space

Stop if spline predicts next € satisfaction states correctly

Goal satisfaction

\ | |

]
Parameter value
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W Spline-based Sampling 4
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Draw samples which minize euclidean distance between
samples in parameter space

Stop if spline predicts next € satisfaction states correctly

Goal satisfaction

+— | |

]
Parameter value
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Y Recursive Correlation Analysis .

Compute correlation coefficient for spline

BO 0 'O O

(86 ) (8o ©

\

If coefficient does not yield correlation, split the spline and
recompute the coefficient

Goal satisfaction (G)

Parameter value (P)

Motivation Related Work Our Approach Evaluation Conclusion
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Y Recursive Correlation Analysis .

Compute correlation coefficient for spline

BO 0 'O O

(86 ) (8o ©

\

If coefficient does not yield correlation, split the spline and
recompute the coefficient

Goal satisfaction (G)

Parameter value (P)
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Y Recursive Correlation Analysis .

Compute correlation coefficient for spline

BO 0 'O O

(86 ) (8o ©

\

If coefficient does not yield correlation, split the spline and
recompute the coefficient

Goal satisfaction (G)

Parameter value (P)

Motivation Related Work Our Approach Evaluation Conclusion



Bremen

U Feasible Design Space Approximation

Deviation over time for @

Goal satisfaction

Simylation time Spline at 0

Parameter value

Motivation Related Work Our Approach Evaluation

Conclusion
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U Feasible Design Space Approximation

Weighting of spline deviation

r o

Q | w) 8 Q| w

Pareto space

Motivation

Goal satisfaction

a

£ € ..
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Related Work

Parameter value

Our Approach Evaluation

Conclusion
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W Evaluation

Performance evaluation of association rule mining step, forest
generation and spline-based sampling

Two use case studies for quality performance evaluation
Lotka-Volterra prey predator system

Interplanetary cruise flight

Synthetic optimization scenarios

Gradient descent, simulated annealing, evolutionary algorithm

Motivation Related Work Our Approach Evaluation

Conclusion
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W Simulation Analysis

Timings of the Associatation Rule Mining process
—. 1000

ms

[
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600
400
200

0

1000 2000 3000 400 5000 6000 7000 8000 9000 10000
Amount of parameters

Computation time

Timings of the forest generation
120

=
o 0 O
o O O

N
o

Computation time [ms]
D
o o

10 20 30 40 80 90 100

50 60
Amount of goals
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W Spline-Based Sampling

Motivation

Sampling rate of unknown objective function

==Spline Sampling

==Random Sampling

2 3 4 5 6 7 8 9 10
Polynomial degree of objective function

Related Work Our Approach Evaluation Conclusion
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W Quality of Optimization Algorithms

200
o 800
700
600
500
400
300
200
100

Distance to Pareto Front [GD

Motivation

Amount of conflicting goals
—— Gradient Descent
——Simulated Annealing
——Evolutionary Algorithm
--- Gradient Descent with KD information
-=-= Simulated Annlealing with KD information
=== Evolutionary Algorithm with KD information

Related Work Our Approach Evaluation

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
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W Conclusion

Completely autonomous knowledge discovery process

Uncovers hidden relationships between simulation input
parameters and simulation goals

Our technigue requires up to 40 % less samples

Approximates Pareto gradient information for multiobjective
algorithms

Gradient descent up to a factor of 5
Simulated annealing up to a factor of 8

Evolutionary algorithm up to a factor of 12

Motivation Related Work Our Approach Evaluation

Conclusion
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W Future Work

Extension of spline-sampling for stochastic simulation

Integration of gradient information into spline-based objective
function sampling

Evaluation with standard optimization problems (e.g. SImOpt
library)

Motivation Related Work Our Approach Evaluation

Conclusion
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Thank you for your attention
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Questions?

Patrick Lange, Rene Weller, Gabriel Zachmann
{lange,weller,zach}@cs.uni-bremen.de

This research is based upon the project KaNaRiA, supported by
German Aerospace Center (DLR) with funds of German Federal
Ministry of Economics and Technoloy (BMWi) grant 50NA1318
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